Scintillation Detectors
Uses of Scintillation Detectors

- Gamma rays/x-rays
- Neutrons
- Charged Particles
Operation

1. Gamma rays interact (photoelectric, Compton, pair production)
Operation

1. Gamma rays interact (photoelectric, Compton, pair production)

2. Interaction produces energetic electrons
Operation

1. Gamma rays interact (photoelectric, Compton, pair production)

2. Interaction produces energetic electrons

3. Electrons produce ionization & excitation
Operation

1. Gamma rays interact (photoelectric, Compton, pair production)

2. Interaction produces energetic electrons

3. Electrons produce ionization & excitation

4. De-exciting atoms produce visible light
Operation

Number of light photons \propto ionization/excitation
Operation

Number of light photons \(\propto \) ionization/excitation

Ionization/excitation \(\propto \) energy of electron
Operation

Number of light photons \(\propto \) ionization/excitation

Ionization/excitation \(\propto \) energy of electron

Number of light photons \(\propto \) energy of electron
Operation

Number of light photons \propto ionization/excitation

Ionization/excitation \propto energy of electron

Number of light photons \propto energy of electron

For photoelectric effect, $K_e = E_\gamma$

Thus, number of light photons $\propto E_\gamma$
Photomultiplier
Photomultiplier
Photomultiplier

Bialkali Photocathode (Sb-Rb-Cs, Sb-K-Cs)
Scintillator & Photomultiplier

- Incident photon
- Scintillator
- Light photon
- Photocathode
- Electrons
- Focusing electrode
- Dynode
- Anode
- Electrical connectors
- Photomultiplier tube (PMT)
Spectrum Interpretation

- Photoelectric effect: \(K_e = E_\gamma \)

- Compton effect:

\[
E_\gamma' = \frac{E_\gamma}{1 + \frac{E_\gamma}{mc^2}(1 - \cos \theta)}
\]

\[
K_e = E_\gamma - E_\gamma'
\]
Spectrum Interpretation

• Compton effect:

\[
E_\gamma'(\text{min}) = \frac{E_\gamma}{1 + \frac{E_\gamma}{mc^2}(1 - (-1))}
\]

\[
K_e(\text{max}) = E_\gamma - E_\gamma'(\text{min})
\]

For \(^{137}\text{Cs}, \ E_\gamma = 662\text{ keV}, \ E_\gamma'(\text{min}) = 184\text{ keV}

\[
K_e(\text{max}) = 478\text{ keV}
\]
NaI(Tl) vs HPGE
NaI(Tl) Detector in Nuclear Medicine

Attenuation coefficient at 150 keV

\[\mu(\text{PE}) = 1.68 \text{ cm}^{-1} \]
\[\mu(\text{C}) = 0.39 \text{ cm}^{-1} \]
\[\mu(\text{total}) = 2.07 \text{ cm}^{-1} \]

For \(x = 0.5 \) in (1.27 cm),

\[\frac{l}{l_0} = 0.07 \]
Other Scintillation Detectors

- CsI(Tl)
- BGO (bismuth germanate)
- BrilLanCe (cerium doped lanthanum bromide)
- Plastic
- Organic liquids
Neutron Detection

- Plastic or organic liquid scintillators
- Recoil proton from n-p scattering
- Pulse-shape discrimination